There is a 50m long army platoon marching ahead. The last person in the platoon wants to give a letter to the first person leading the platoon. So while the platoon is marching he runs ahead, reaches the first person and hands over the letter to him and without stopping he runs and comes back to his original position.

In the mean time the whole platoon has moved ahead by 50m.

The question is how much distance did the last person cover in that time. Assuming that he ran the whole distance with uniform speed.

Submitted

Answer:

The last person covered 120.71 meters.

It is given that the platoon and the last person moved with uniform speed. Also, they both moved for the identical amount of time. Hence, the ratio of the distance they covered - while person moving forward and backword - are equal.

Let's assume that when the last person reached the first person, the platoon moved X meters forward.

Thus, while moving forward the last person moved (50+X) meters whereas the platoon moved X meters.

Similarly, while moving back the last person moved [50-(50-X)] X meters whereas the platoon moved (50-X) meters.

Now, as the ratios are equal,

(50+X)/X = X/(50-X)

(50+X)*(50-X) = X*X

Solving, X=35.355 meters

Thus, total distance covered by the last person

= (50+X) + X

= 2*X + 50

= 2*(35.355) + 50

= 120.71 meters

Note that at first glance, one might think that the total distance covered by the last person is 100 meters, as he ran the total lenght of the platoon (50 meters) twice. TRUE, but that's the relative distance covered by the last person i.e. assuming that the platoon is stationary.

Edwin van der Sar meminta manajer Manchester United untuk segera
membangkitkan motivasi para pemain. Manchester United mengundang perhatian
dari para manta...

## No comments:

Post a Comment